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Abstract—The increasing popularity and ubiquity of various
large graph datasets has caused renewed interest for graph
partitioning. Existing graph partitioners either scale poorly
against large graphs or disregard the impact of the underlying
hardware topology. A few solutions have shown that the nonuni-
form network communication costs may affect the performance
greatly. However, none of them considers the impact of resource
contention on the memory subsystems (e.g., LLC and Memory
Controller) of modern multicore clusters. They all neglect the
fact that the bandwidth of modern high-speed networks (e.g.,
Infiniband) has become comparable to that of the memory
subsystems. In this paper, we provide an in-depth analysis,
both theoretically and experimentally, on the contention issue
for distributed workloads. We found that the slowdown caused
by the contention can be as high as 11x. We then design an
architecture-aware graph partitioner, ARGO, to allow the full
use of all cores of multicore machines without suffering from
either the contention or the communication heterogeneity issue.
Our experimental study showed (1) the effectiveness of ARGO,
achieving up to 12x speedups on three classic workloads: Breadth
First Search, Single Source Shortest Path, and PageRank; and
(2) the scalability of ARGO in terms of both graph size and the
number of partitions on two billion-edge real-world graphs.

Index Terms—Heterogeneity; Contention; Multicore; Graph
Partitioning; Distributed Graph Processing;

I. INTRODUCTION

Large graph datasets are becoming increasingly popular.
For example, graphs, like Web Graphs, Biological Networks,
and Social Networks, are often at the scale of hundreds
of billions or even a trillion (10ˆ12) edges, and they are
continuously growing. As a consequence, many distributed
graph computing frameworks (e.g., Pregel [23], GraphLab [20]
and PowerGraph [11]) have been developed.

In such systems, distributing vertices evenly across parti-
tions often corresponds to an even load distribution, while min-
imizing the edge-cut (the number of edges connecting different
partitions) helps minimize the amount of data communication
incurred by the computation. Balanced graph partitioning has
been proved to be NP-hard [3]. Most of the solutions are
heuristic-based [12], [34]. The most well-known approaches
are multi-level ones [17]. However, these solutions often scale
poorly against large graphs [36], [27].

To address the scalability issue, a (re)streaming graph
partitioning model [36], [39], [27], [7] was recently proposed
for large graph partitioning. In this model, the graph is treated
as a stream of vertices. Upon arrival of a vertex, the partitioner
places the vertex to one of the partitions based on the distri-
bution of the vertices that arrived previously. Nevertheless,
none of the above partitioners considers the nonuniform

network communication costs of modern parallel computing
infrastructures [6], [41], [42].

Three recent works [6], [41], [42] attempted to tackle this
heterogeneity issue by trying to avoid any edges being cut
among partitions having higher network communication costs
(minimizing hop-cut). However, these graph partitioners are all
built on the assumption that the network is the bottleneck,
since they all aim to minimize either the edge-cut or the
hop-cut. The assumption is typically true for geo-distributed
clusters and the cloud computing environment. However, for
clusters connected via high-speed networks like InfiniBand,
this assumption no longer holds: the data transfer on these
networks has been reported to be almost as fast as moving data
from memory to CPU [9]. Actually, several recent works [45],
[44], [13] have found that the contention for the shared
hardware resources on the memory subsystems (e.g., last
level cache, memory controller, and front-side bus) of mod-
ern multicore machines can greatly impact the performance
of distributed workloads. Specifically, work [13] investigates
the contention issue for MPI [1] workloads, whereas our
works [45] and [44] are architecture-aware (heterogeneity-
and contention-aware) graph repartitioners designed to avoid
the heterogeneity and contention issue for distributed graph
workloads.
Contributions This paper advances the state-of-the-art with
regards to contention for distributed (graph) workloads with
the following three contributions:
1. We provide a holistic view on: (a) why we have to care

about the contention for distributed workloads (Section II);
and (b) to what extent it may impact the performance of
distributed workloads (Section V).

2. We present an architecture-aware graph partitioner, ARGO,
which avoids both the heterogeneity and the contention
issue without doing so at the cost of resource underuti-
lization, for static graph partitioning (Section III).

3. We evaluate our approach extensively using three large
real-world graphs, showing up to 12x speedups on three
classic graph workloads (Section VI & VII).

II. THE CURSE OF CONTENTION

Multicore machines usually consist of multiple sockets
and each socket has multiple cores. Each core is a logical
processing unit, but they are not physically isolated. Cores of
the same socket have to contend with each other for the shared
hardware resources. For example, in the architecture depicted
in Figure 1a, cores sharing the L2 caches have to compete
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Fig. 2: Memory transactions of inter-node data communica-
tion via RDMA [14]

TABLE I: Intra-Node Shared Resource Contention

Cores/Resources Sharing Contention
Core Groups Socket LLC LLC FSB/QPI(HT) Memory Controller

G1 X X X X X
UMA G2 X X X
Fig. 1a G3 X

NUMA G1 X X X X
Fig. 1b G2 X

with each other for the shared L2, Front-Side Bus (FSB), and
the Memory Controller. Although cores on different sockets
do not share the L2, they may still contend for the shared
FSB and Memory Controller. In fact, even if they are residing
on different sockets, they may have to contend for the shared
Memory Controller. Table I provides a concise summary for
the resources that different cores may have to contend for, in
the Uniform Memory Access (UMA) architecture of Figure 1a
and the Non-Uniform Memory Access (NUMA) architecture
of Figure 1b. The summary is based on whether the cores are
on the same socket and whether they share the last level cache
(LLC).

The impact of contention is becoming more and more
noticeable because network nowadays may no longer be the
bottleneck due to the presence of remote direct memory
access (RDMA) technology [9]. RDMA-enabled networks
allow a compute node to read data from the memory of
another compute node without involving the processor, cache,
or operating system of either node, enabling true zero-copy

Fig. 3: Theoretic bandwidth for different InfiniBand and
memory technologies (Binnig et. al. [9].)
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Fig. 4: Memory transactions of intra-node data communication
via shared memory

data communication [14] (Figure 2). At the same time, the
bandwidth of modern RDMA-enabled networks has been
reported to be in the same ballpark as memory bandwidth [9].
As shown in Figure 3, DDR3 memory bandwidth is currently
between 6.25GB/s (DDR3-800) and 16.6GB/s (DDR3-2133)
per memory channel, whereas InfiniBand bandwidth ranges
from 1.7GB/s (FDR 1x) to 37.5GB/s (EDR 12x) per NIC port.
Thus, the memory bandwidth of a machine with 4-channel
DDR3-1600 memory can be roughly provided by four dual-
port FDR 4x NICS.

The fact that intra-node data communication is often
achieved via shared memory further amplifies the contention,
because communication requires additional data copies [16],
[5], leading to cache pollution and thus saturating the memory



controller. Figure 4 shows the corresponding memory/cache
transactions for sending a message from one core to another.
The sending core first needs to load the message from the
application send buffer into its cache (Step 1 in Figure 4) and
then write the data to the shared buffer (Step 2b). However,
the write may require loading the shared buffer block into the
sender’s cache first (Step 2a). Then, the receiving core reads
the data from the shared memory (Step 3). Finally, the receiver
writes the data to the receiving buffer (Step 4b), which may
again require loading the receiving memory block into the
receiver’s cache first (Step 4a).

Thus, if the sending core shares the same last level cache
with the receiving core, there will be multiple copies of the
same message in LLC. This is because in addition to the
cached message for the send and receiving buffer, the message
in the shared memory has also to be cached in the LLC. Even
if the sender and receiver do not share LLC, the LLC of both
sender and receiver may still have to maintain multiple copies
of the message as long as they reside on the same machine (one
for the shared memory buffer and the other one for the send
or receive buffer). Clearly, intra-node data communication
may lead to serious cache pollution and therefore saturate the
memory controller.

What is even worse is that graph workloads are known to be
communication-intensive, and that cores on the same machine
are often communicating with each other at the same time for
parallel computation, further increasing the contention for the
shared resources. The fact that graph workloads often have
poor locality [22] (because of the irregular and unstructured
nature of real-world graphs) and high memory access to com-
putation ratio [22] (since graph algorithms are often based on
the exploration of the graph structure with little computation
work per vertex) further aggravates the contention issue. We
have experimentally confirmed and quantified the performance
impact of the contention on the distributed graph workloads
in Section V.

Take-Away Focusing solely on minimizing the edge-cut or the
hop-cut may not be sufficient for scalable performance. This
is because edge-cut based solutions have no guarantee on
how the edge-cut is distributed across partitions. They may
end up with lots of data communication among partitions that
are assigned to the same machine, leading to contention on
the memory subsystems. On the other hand, hop-cut based
solutions advocate to group neighbouring vertices as close
as possible, further aggravating the contention the memory
subsystems.

III. ARCHITECTURE-AWARE GRAPH PARTITIONING

In this section, we first introduce the partitioning
model adopted by our proposed Architecture-Aware Graph
PartitiOning technique, ARGO (Section III-A). Then, we show
how ARGO takes the communication heterogeneity into ac-
count while partitioning (Section III-B). Finally, we describe
how ARGO considers the contentiousness of the underlying
hardware architectures (Section III-C).

A. ARGO: Graph Partitioning Model

ARGO follows the same streaming model first proposed
by [36]. In such a model, vertices arrive at the partitioner
in a certain order along with their adjacency lists. Upon the
arrival of each vertex, the partitioner decides the placement of
the vertex to one of the partitions based on the placements of
vertices previously arrived. The placement of the vertex never
changes once it is assigned to a partition.

A variety of heuristics have been proposed by [36] for the
vertex placement, among which the linear deterministic greedy
(LDG) performs the best. LDG tries to assign a vertex, v, to
a partition, Pi, which maximizes:

(1− w(Pi)

C(Pi)
) ∗

∑
e=(u,v)∈E and u∈Pi

w(e) (1)

where w(Pi) is the aggregated weights of vertices that have
been assigned to Pi (indicating the computational requirement
of the vertices of the partition), C(Pi) denotes the maximal
amount of work Pi can have, and w(e) is the edge weight
(reflecting the amount of data communication between neigh-
boring vertices). Essentially, LDG places each vertex to a
partition with the maximum number of its neighbors while
penalizing the placement based on the load of the partition.

B. ARGO: Incorporating Heterogeneity-Awareness

ARGO takes the nonuniform network communication costs
into account by replacing the vertex placement heuristics to
maximize the following objective:

1

comm(v, Pi) + 1
∗ (1− w(Pi)

C(Pi)
) (2)

where comm(v, Pi) is defined as

comm(v, Pi) =
∑

e=(u,v)∈E and u∈Pj and i6=j

w(e) ∗ c(Pi, Pj)

(3)
comm(v, Pi) reflects the communication cost that v would
incur during the computation if it is assigned to Pi. Here,
w(e) denotes the edge weight, whereas c(Pi, Pj) is the relative
network communication cost between the computing elements
that Pi and Pj are assigned to. The computing element can
either be a core (one partition per core), a socket (one partition
per socket), or a server (one partition per node). By default,
we assume that the computing elements are cores since we
target for clusters of multicore machines. Guided by a cost
matrix, ARGO will put neighboring vertices to partitions as
close as possible. We denote this version of ARGO as ARGO-
H, since it only considers the communication heterogeneity
while ignoring the contentiousness of the underlying hardware
architecture.

C. ARGO: Incorporating Contention-Awareness

As analysed in Section II and will be demonstrated in
Section V, edge-cut (e.g., LDG) and hop-cut (e.g., ARGO-
H) based solutions may lead to serious resource contention
on the memory subsystems of modern multicore clusters. One



common way to avoid this contention issue is to disallow the
use of all the cores of the machine, which leads to resource
underutilization.

Fortunately, we found that the contention is caused by
the communication among cores of the same node and can
be avoided by offloading a certain amount of intra-node
communication across compute nodes. This is because inter-
node data communication is often implemented using RDMA
and rendezvous protocols [37], which allows a compute node
to read data from the memory of another compute node
without involving the processor, cache, or operating system of
either node (Figure 2), thus alleviating the traffic on memory
subsystems and cache pollution. In fact, with Intel Data Direct
I/O technology [15], it is even possible to transfer data from
one machine into the cache of another. Another reason why of-
floading intra-node data communication across compute nodes
(via contention-aware graph partitioning) works is that graph
workloads are often data-driven. The computations performed
by a graph algorithm are dictated by the vertex and edge
structure of the graph on which it is operating rather than
being directly expressed in code [22].

Thus, to make ARGO contention-aware, we penalize intra-
node network communication costs via a penalty score in the
same way as in our previous work [45], [44]. The score is
computed based on the degree of contentiousness between
the communication peers. By doing this, the amount of intra-
node data communication and the contention on the memory
subsystems will decrease accordingly. Recall that guided by a
cost matrix, ARGO-H can gather neighboring vertices close to
each other (Eq. 2), which causes contention on the memory
subsystems due to the excess intra-node data communication.
To solve this, we simply refine the intra-node communication
costs as follows:

c(Pi, Pj) = c(Pi, Pj) + λ ∗ (s1 + s2) (4)

where Pi and Pj are two partitions collocated in a single
compute node; λ is a value between 0 and 1, denoting the
degree of contention; and s1 denotes the maximal inter-node
network communication cost, while s2 equals 0 if Pi and Pj

reside on different sockets and equals the maximal inter-socket
network communication cost otherwise. s1 is used to avoid
excess intra-node data communication, whereas s2 is used
to prevent load imbalance on the memory controllers and to
further avoid the contention on the shared LLC.

Clearly, if λ = 0, ARGO degrades to ARGO-H, and
λ = 1 means that contention on the memory subsystems
is the biggest bottleneck and should be prioritized over the
communication heterogeneity. Note that ARGO with any λ ∈
(0, 1] considers both the contention and the communication
heterogeneity. Considering the impact of resource contention
and communication heterogeneity is highly application- and
hardware-dependent; users will need to do simple profiling of
the target applications on the actual computing environment
to determine the ideal λ for them. Typically, for multicore
clusters with high-speed network, a larger λ is recommended,
and vise verse.

TABLE II: Datasets used in our experiments

Dataset |V | |E| Description
com-orkut [2] 3,072,627 234,370,166 Social Network
Friendster [2] 124,836,180 3,612,134,270 Social Network
Twitter [19] 52,579,682 3,926,527,016 Social Network

TABLE III: Cluster Compute Node Configuration

Socket
(2 Intel Haswell Sockets) Memory

Cores/Socket Clock speed L3 Cache Capacity Bandwidth
10 2.6GHz 25MB 128 GB 65 GB/s

IV. EVALUATION SETUP

In our experimental study, we first quantified the perfor-
mance impact of the contention issue using three representative
graph workloads: Breadth-First Search (BFS), Single-Source
Shortest Path (SSSP), and PageRank in Section V. Then, we
evaluated the effectiveness of ARGO in avoiding contention
using the same workloads in Section VI. Finally, we examined
the scalability of ARGO in terms of both graph size and the
number of partitions in Section VII.

A. Workload Implementation

All the workloads were implemented using MPI [1] based
on the idea presented in [4], [21]. The specific MPI im-
plementation we used in the experiment was OpenMPI
1.8.6 [28]. Note that the workloads were implemented using
MPI Isend/MPI Irecv functions.

B. Datasets

Table II describes the datasets used. com-orkut and Friend-
ster datasets were undirected, whereas the original Twitter
dataset was directed but was treated as a undirected graph
in the experiment. Note that these datasets were all scale-
free and small-world graphs. The vertex degree-distribution
of the scale-free graphs asymptotically follows a power law
distribution [8], [30], whereas small-world graphs are known
to have low diameters.

Throughout the paper, the graphs were partitioned with the
vertex weights (i.e., computational requirement) set to their
vertex degree and edge weights (i.e., amount of data commu-
nicated) set to 1. Vertex degree is a good approximation of the
computational requirement of each vertex for the execution of
BFS, SSSP, and PageRank, while an edge weight of 1 is a
close estimation of their communication patterns. By default,
the graphs were partitioned across cores of a given set of
machines with one partition per core. During the partitioning,
we allowed up to 2% load imbalance among partitions.

C. Algorithms

We compared ARGO to three graph partitioners: (a) METIS,
the most well-known multi-level graph partitioner [26], (b)
LDG, a state-of-the-art streaming graph partitioner [36], and
(c) ARGO-H (Section III).



TABLE IV: BFS, SSSP, and PageRank Execution Time in Seconds on com-orkut Dataset Under Different Configurations

Configuration BFS (10 Source Vertices) SSSP (10 Source Vertices) PageRank (30 Iterations)
METIS LDG ARGO-H METIS LDG ARGO-H METIS LDG ARGO-H

1:2:8 53.05 95.82 68.61 633 2,632 1,549 174 690 859
2:2:4 55.01 105.71 88.17 654 2,565 1,505 222 619 618
4:2:2 36.85 55.82 64.02 521 631 861 202 269 247
8:2:1 19.16 45.81 14.84 222 280 132 95.84 133 108

TABLE V: BFS, SSSP, and PageRank LLC Misses in Millions on com-orkut Dataset Under Different Configurations

Configuration BFS (10 Source Vertices) SSSP (10 Source Vertices) PageRank (30 Iterations)
METIS LDG ARGO-H METIS LDG ARGO-H METIS LDG ARGO-H

1:2:8 609 424 283 10,292 44,117 23,632 1,945 6,216 10,209
2:2:4 662 601 766 10,626 44,689 23,770 2,719 6,836 9,087
4:2:2 59 73 70 2,541 1,061 2,787 48 100 82
8:2:1 52 67 66 96 187 141 44 98 87

D. Evaluation Platform

All the experiments were performed on a 32-node university
cluster [33]. The cluster had a flat network topology with all
the compute nodes connected to a single switch via 56Gbps
FDR Infiniband. Table III depicts the node configuration of
the cluster.

E. Network Communication Cost Modeling

The relative network communication costs among partitions
(cores) were approximated using a variant of osu latency
benchmark [29]. To ensure the accuracy of the cost matrix,
we bound each MPI rank (process) to a core using options
provided by OpenMPI 1.8.6 [28].

V. PERFORMANCE IMPACT OF RESOURCE CONTENTION

In this section, we experimentally demonstrated and quan-
tified the performance impact of the contention on distributed
graph computing using METIS, LDG, and ARGO-H. This
is achieved by comparing runs of an MPI implementation
of PageRank, BFS, and SSSP with different process (rank)
affinity patterns.

For presentation clarity, we labelled an execution of a
workload under a specific partition (rank) to core mapping
as m:s:c, where m, s, and c, respectively, denote the number
of machines used, the number of sockets used per machine,
and the number of cores used per socket. For example, label
1:2:8 indicates that the experiment was performed on one
dual-socket machine with eight MPI ranks per socket (one
rank per core). To quantify the performance impact of the
contention, we ran each workload with a fixed number of MPI
ranks (16) under four different configurations: {1:2:8, 2:2:4,
4:2:2, 8:2:1}. Note that the degree of contention gradually
decreased from configuration 1:2:8 to configuration 8:2:1.
This is because the number of active cores per socket of
the configurations gradually decreased from 8 to 4, to 2, and
finally to 1. This also explains why we only used 16 cores per
node at most (8 cores per socket) in this experiment, although
each compute node of the cluster had 20 cores.

To mitigate the impact of other factors, executions of
BFS/SSSP under different configurations all started from the

same set of randomly selected source vertices (10 by default).
Also, given the long execution time of the jobs, we grouped
multiple (256) messages sent by the same MPI rank to the
same destination into a single one. In the experiment, the
dataset was partitioned into 16 partitions across corresponding
cores (one partition per core) using METIS, LDG, and ARGO-
H. Note that we observed similar results on the other datasets
of Tabel II.

A. Results in terms of execution time (Table IV)

Table IV shows the resulting execution time of the work-
loads under different configurations on the com-orkut dataset
(Table II). As expected, the higher the contention was, the
longer the execution time would be. When compared with
configuration 8:2:1, the slowdown caused by the contention
can be as high as 5.94, 11.69, and 7.94 times for the execution
of BFS, SSSP, and PageRank, respectively. We also noted that
even if we reduced the number of active cores per socket
by half (configuration 2:2:4), the application may still suffer
from serious contention. The reason why the execution of BFS
under configuration 2:2:4 sometimes took longer than that of
configuration 1:2:8 was probably because configuration 2:2:4
and configuration 1:2:8 has similar degree of contentiousness,
but configuration 2:2:4 required data communication across
machines (which was typically slower than intra-node data
communication).

Another interesting observation was that METIS performed
better than LDG and ARGO-H in most configurations except
configuration 8:2:1. This was probably because the partition-
ings computed by METIS had the lowest edge-cut and thus
lowest amount of contention on the memory subsystems. The
reason why ARGO-H was worse than METIS and sometimes
even worse than LDG in dense configurations (i.e., 1:2:8,
2:2:4, and 4:2:2) was because ARGO-H was a hop-cut based
solution. It aims to avoid inter-machine data communication
by gathering neighbouring vertices as close as possible, which
may lead to significant intra-node data communication and
thus increase the contention on the memory subsystems.

However, ARGO-H outperformed METIS and LDG on two
out of the three workloads under configuration 8:2:1. This



TABLE VI: BFS, SSSP, and PageRank Execution Time (Second) on com-orkut Dataset with Varying Message Grouping Size

Configuration BFS (10 Source Vertices) SSSP (10 Source Vertices) PageRank (30 Iterations)
64 128 256 64 128 256 64 128 256

METIS 196 27.27 8.59 3,730 787 125 1,435 121 32.74
LDG 136 33.32 9.52 3,003 523 71.84 1,110 161 48.93

ARGO-H 306 40.84 9.28 4,750 1,033 147 2,088 179 31.81
ARGO 73.11 19.12 5.20 1,528 196 49.84 406 71.74 16.68

TABLE VII: BFS, SSSP, and PageRank LLC Misses in Millions on com-orkut Dataset with Varying Message Grouping Size

Configuration BFS (10 Source Vertices) SSSP (10 Source Vertices) PageRank (30 Iterations)
64 128 256 64 128 256 64 128 256

METIS 843 50 17 38,942 6,313 471 10,605 529 22
LDG 194 27 22 30,096 1456 59 4,605 69 43

ARGO-H 1,702 36 22 51,774 8,173 589 17,360 748 35
ARGO 35 26 21 8,702 163 49 142 49 37

was expected because under configuration 8:2:1 reducing
inter-machine data communication became more critical than
mitigating the contention. This also confirmed the fact that the
network may not always be the bottleneck. The reason why
ARGO-H did not outperform METIS on PageRank execution
was probably because PageRank was more communication-
intensive than BFS and SSSP, and thus the contention on the
memory subsystems was still the dominant factor even under
the sparsest configuration.

B. Results in terms of LLC misses (Table V)

To confirm that the slowdown was indeed caused by the
contention on the memory subsystems, we also reported the
LLC misses for each execution of the workloads in Table V.
The LLC misses were collected via the PAPI L3 TCM event
provided by the hardware performance counter programming
tool, PAPI [31], and the values reported were the average
LLC misses across partitions (MPI processes). By comparing
Tables V and IV, we observed that the timing results were
highly consistent with the LLC miss results. The denser the
configuration was, the larger the LLC misses and thus the
longer execution time of the workload would be. We also
observed that under configuration 8:2:1 ARGO-H had much
higher LLC cache misses than that of METIS for BFS and
SSSP, but it still outperformed METIS in terms of the execution
time. This further confirmed our assumption that under config-
uration 8:2:1 reducing inter-machine data communication was
more critical to the performance than mitigating contention
on memory subsystems (e.g., cache pollution caused by inter-
socket data communication), for BFS and SSSP.

C. Discussions

The above experimental results can be summarized as
follows:

Take-Away 1 The contention on the memory subsystem
can also have significant performance impact on distributed
workloads, especially for multicore machines connected via
high-speed networks.

Take-Away 2 Heterogeneity-aware graph (re)partitioners
are designed for cases where the network is the bottleneck,
especially for geo-distributed clusters or cloud computing
environments.

VI. EFFECTIVENESS IN AVOIDING CONTENTION

This experiment evaluated the effectiveness of ARGO in
avoiding contentiousness using BFS, SSSP, and PageRank on
the com-orkut dataset. In the experiment, the dataset was par-
titioned across three 20-core compute nodes with one partition
per core. As demonstrated in Section V, the contention on the
memory subsystems on the cluster was the primary bottleneck.
Hence, we set λ to 1 for all the experiments presented below.

A. Results in terms of Execution Time (Table VI)

Table VI shows the workload execution time on decompo-
sitions computed by METIS, LDG, ARGO-H, and ARGO with
three different message grouping sizes: 64, 128, and 256. As
expected, ARGO had the lowest workload execution time in all
cases. In comparison to METIS, LDG, and ARGO-H, ARGO,
respectively, speeded up the execution of BFS by up to 2.67,
1.85, and 4.18 times; the execution of SSSP by up to 4, 2.66,
and 5.26 times; and the execution of PageRank by up to 3.53,
2.93, and 5.14 times.

Interestingly, we found that ARGO-H performed the worst
in almost all cases. This was also expected because ARGO-
H aimed to grouping neighbouring vertices as close as pos-
sible, which may cause an increase in the intra-node data
communication and thus aggravate the contention on the
memory subsystems. However, as the message grouping size
increased, the gap between ARGO-H and METIS/LDG was
gradually closed up. This was because, the larger the message
grouping size was, the fewer the messages were exchanged
and thus the less contention on the memory subsystems.
As a result, the importance of reducing inter-machine data
communication gradually increased, calling for heterogeneity-
aware graph partitioners. This also explained the reason why
the improvement achieved by ARGO decreased sometimes as
the message grouping size increased.
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(b) SSSP Communication Volume
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(c) PageRank Communication Volume

Fig. 5: Breakdown communication volume for the execution of BFS, SSSP, and PageRank on com-orkut partitionings, and
ARGO. Here, intra-socket, inter-socket, and inter-node, respectively, represent the communication volume among partitions that
were assigned to the same sockets, the communication volume among partitions that were residing on different sockets but on
the same machines, and the communication volume among partitions of different machines.

Take-Away ARGO performs better for workloads with a large
number of small message exchanges, whereas ARGO-H seems
to be more suitable for workloads with lots of large message
exchanges.

B. Results in terms of LLC Misses (Table VII)

To further show that the improvement was indeed caused by
the reduced contention on the memory subsystems. We also
recorded the LLC misses for the execution of the workloads
in Table VII. As shown, the LLC miss results were highly
consistent with the timing results: (1) ARGO had the lowest
LLC misses in almost all cases whereas ARGO-H had the
highest LLC misses in most cases; and (2) the larger the
message grouping size was, the fewer the misses were.

Interestingly, we found that with message grouping size of
256, METIS actually had lower LLC misses than that of ARGO
for the execution of BFS and PageRank. However, ARGO
still beat METIS in terms of execution time (Table VI). We
attributed this to two facts (1) that intra-node data communi-
cation required the involvement of the CPU (CPU spending
time in communicating the data), while inter-machine data
communication relieved the CPU from the communication
(allowing it to focus on computation: processing the messages
received); and (2) that the larger message grouping size
allowed a larger degree of the overlap between the computation
and communication, further amplifying the benefits of RDMA-
enabled networks.
Take-Away It is important to take both the contention on the
memory subsystems and the communication heterogeneity into
account while partitioning.

C. Results in terms of Communication Volume (Figure 5)

To further confirm that the reduction in the contention was
indeed caused by the reduced intra-node data communication,
we also present the breakdown communication volume for
each execution of the workloads in Figure 5. As shown, ARGO
had the lowest intra-node data communication in all cases,
while ARGO-H had the highest intra-node data communica-
tion. When compared with METIS and LDG, ARGO, respec-
tively, reduced the intra-socket data communication by up to

70% and 40% for the execution of BFS, by up to 70% and
50% for the execution of SSSP, and by up to 70% and 50% for
the execution of PageRank. All these matched the timing and
LLC misses results. Another interesting observation was that
even though METIS had lower overall communication volume
than that of ARGO, ARGO still outperformed METIS in terms
of execution time due to the reduced communication volume
in critical components (intra-node data communication).

Take-Away Putting too much data communication into cores
of the same machine may lead to significant contention on the
memory subsystems and thus hurt the performance. Counter-
intuitively, offloading a certain amount of intra-node data
communication across machines may sometimes achieve better
performance due to the presence of RDMA-enabled networks.

VII. SCALABILITY STUDY

A. Scalability in terms of Graph Size (Table VIII)

Configuration This experiment evaluated the scalability of
ARGO as the size of the graph increased. Towards this, we
generated six additional datasets by sampling the edge set
of the Friendster and Twitter datasets. Then, we examined
the execution time of the workloads on the datasets when
they were partitioned across four 20-core machines (with one
partition per core and message grouping size of 512). Note
that METIS failed to partition the datasets.

Results Table VIII shows the corresponding workload execu-
tion time as the size of the graphs increased. As can be seen,
ARGO outperformed both LDG and ARGO-H in all cases,
whereas ARGO-H was always the worst. Compared to LDG,
ARGO achieved by to 2.71x, 2.72x, and 3.58x speedups for
the execution of BFS, SSSP, and PageRank, respectively. As
expected, the speedups against ARGO-H were much higher,
since what ARGO-H did during the partitioning aggravated
the contention issue. The speedups were quite consistent in
spite of the increasing graph size, showing the stability and
scalability of ARGO.



TABLE VIII: BFS, SSSP, and PageRank Execution Time in Seconds as the Graph Size Increased

# of Edges (in Billion) BFS (5 Source Vertices) SSSP (5 Source Vertices) PageRank (15 Iterations)
LDG ARGO-H ARGO LDG ARGO-H ARGO LDG ARGO-H ARGO

Friendster
0.9 10.74 16.46 7.93 111 266 54.46 36.79 65.92 18.80
1.8 37.46 74.76 24.24 599 1,700 243 156 479 108
2.7 78.78 147 49.87 2,273 3,429 1,007 476 4,972 1346
3.6 156 470 80.26 3,243 4,531 1,687 757 2,259 361

Twitter
0.98 13.10 15.68 7.58 126 414 66.09 51.46 79.88 33.65
1.96 44.94 157 28.44 1,190 1,932 437 262 1,019 169
2.94 146 399 72.08 3,788 4,690 2,071 1,071 2,071 430
3.92 285 607 105 6,875 8,610 4,688 2,208 2,951 617

TABLE IX: BFS, SSSP, and PageRank Execution Time in Seconds as the # of Partitions Increased

Number of Partitions BFS (5 Source Vertices) SSSP (5 Source Vertices) PageRank (15 Iterations)
LDG ARGO-H ARGO LDG ARGO-H ARGO LDG ARGO-H ARGO

Friendster
80 156 470 80.26 3,243 4,531 1,687 757 2,259 361

100 68.66 212 37.72 1,747 3,304 541 350 1,248 182
120 42.71 210 21.52 878 2,210 262 252 975 141
140 42.63 121 22.07 384 2,059 162 152 626 83.43
160 29.20 81.81 20.45 228 1,732 151 134 441 65.40
180 24.26 61.88 18.81 201 1,350 72.42 82.94 282 52.49
200 20.17 48.47 18.83 146 1,079 120 58.28 244 51.79

Twitter
80 285 607 105 6,875 8,610 4,688 2,208 2,951 617

100 124 457 69.83 3,647 4,859 2,062 651 2,012 359
120 85.93 160 39.10 2,297 3,903 848 488 1,427 241
140 75.20 149 24.81 948 2,737 351 264 880 128
160 35.32 145 23.84 475 1,765 174 173 305 108
180 25.37 80.12 22.88 283 1,754 158 118 260 64.37
200 28.24 57.74 21.36 261 1,177 135 116 214 63.81

B. Scalability in terms of # of Partitions (Tables IX & X)

Configuration This experiment inspected the effectiveness of
ARGO as the number of partitions increased. Towards this, we
partitioned the original Friendster and Twitter dataset across
four up to ten 20-core machines (one partition per core) and
then examined the BFS, SSSP, and PageRank execution time
on the partitionings (with message grouping size of 512)
computed by LDG, ARGO-H, and ARGO.

Results in terms of Execution Time (Table IX) Table IX
presents the corresponding results. As expected, ARGO per-
formed the best in all cases whereas ARGO-H performed the
worst. In comparison to LDG, ARGO, respectively, speeded up
the execution of BFS by up to 3.03x, the execution of SSSP
by up to 3.36x, and the execution of PageRank by up to 3.58x.
The corresponding speedups against ARGO-H were as high as
9.78x, 12.70x, and 6.9x, respectively.

We also noted that the workload execution time decreased,
as the number of partitions increased. One of the reasons for
this was that as the number of partitions increased, the degree
of parallelism also increased. Another possible reason was that
the degree of contention on the memory subsystems decreased
due to the reduced intra-node data communication volume.

TABLE X: Partitioning Time in Seconds

# of Partitions Friendster Twitter
LDG ARGO LDG ARGO

80 68.70 313 99.02 110.09
100 71.57 387 59.74 157.57
120 72.37 477 68.99 176.86

The drop in the intra-node data communication was caused by
the increasing number of inter-machine communication peers.
For example, with four machines (80 partitions), each partition
only had 60 inter-machine communication peers, whereas with
five machines (100 partitions), the number of inter-machine
communication peers of each partition increased to 80. This
also explains the reason why the improvement achieved by
ARGO became smaller as the number of partitions increased.
Nevertheless, one thing should be aware of here was that the
size of the graph remained unchanged and that ARGO reduced
the execution time of each core used by this much.

Results in terms of Partitioning Overhead (Table X)
We also reported the partitioning overhead (vertex placement
decision time) of ARGO in Table X. The longer partitioning
time of ARGO was caused by an optimization we made: ARGO



loaded vertices of the graph from the file system in blocks
and streamed each in-memory vertex block twice to further
improve the partitioning quality. Thus, ARGO was a partial
restreaming graph partitioner. Fortunately, the partitioning only
has to be performed once and can be used multiple times.
Also, graph processing often require the processing of the
entire graph (e.g., SSSP for a large set of source vertices or
PageRank with more iterations) which will have significantly
longer execution time when compared with partitioning time.

VIII. RELATED WORK

Distributed Graph Computing Many distributed graph
computing frameworks, such as Pregel [23], Giraph [10],
GraphLab [20], PowerGraph [11], Mizan [18], Giraph++ [38],
GoFFish [35], and Blogel [43], have been proposed for big
graph processing. These systems hide the complexity of data
partitioning, computation parallelization, and fault tolerance
from users, providing a simple and elegant way for users to
design and implement scalable distributed graph algorithms.

Pregel, as one of the most popular graph computing engines,
adopts a vertex-centric model. In such a model, users only
need to specify the logic for one vertex, whereas the system
will hide the complexity of executing the logic on all vertices
in a distributed fashion. The execution is carried out in a
sequence of supersteps separated by a global synchronization
barrier. In each superstep, the vertex can change its state and
the state of its outgoing edges, send messages to its neighbours
to be processed in the next superstep, or even modify the
structure of the graph. Vertices can vote to halt at the end
of each superstep and be reactivated by messages from its
neighbors. The execution ends when all vertices are inactive.

Graph Partitioning Most of the systems partition the vertices
of the graph across workers by cutting edges (edge-cut), except
PowerGraph which partitions the edges of the graph across
workers by cutting vertices (vertex-cut). Edge-cut based graph
partitioning has been studied for decades [12], [34]. The well-
studied multilevel graph partitioners, like METIS [26], are
known for their capability of producing high-quality decompo-
sitions. However, they scale poorly against large graphs even
if performed in parallel since they require full knowledge of
the graph for partitioning.

Streaming [36], [39], [27] and restreaming [27] partitioners
are the recent solutions to large graph partitioning. In the
streaming setup, the graph is treated as a stream of vertices.
Upon arrival of a vertex, the partitioner places the vertex to
one of the partitions permanently based on the distribution
of the vertices that previously arrived. As can be seen, the
information that the partitioner can use for vertex placement
decision is limited. To address this, restreaming partitioning
consists of several passes of streaming partitioning and allows
subsequent passes can have access to the results of previous
passes. By doing this, the partitioner is capable of leveraging
more information about the graph for partitioning. They were
reported to be able to output decompositions comparable to
METIS but within a relatively short time.

Recently, a new distributed graph partitioner, Sheep [24],
has been proposed for large graph partitioning. It is similar
in spirit to METIS. They both first reduce the original graph
to a smaller tree or a sequence of smaller graphs, then do a
partition of the tree or the smallest graph, and finally map the
partitioning back to the original graph. In terms of partitioning
time, Sheep performs better than both METIS and streaming
partitioners. For partitioning quality, Sheep is competitive with
METIS for a small number of partitions and is competitive with
streaming graph partitioners (such as LDG [36]) for larger
numbers of partitions. Since Sheep has similar characteristics
as METIS and streaming partitioners in terms of partitioning
quality, we omitted its comparison, especially considering
METIS and LDG are more prevail graph partitioners.

Several heterogeneity-aware graph partitioners [6], [41],
[42] have been proposed. However, none of them considers the
contention issue on the memory subsystems of modern mul-
ticore machines. The only two heterogeneity- and contention-
aware work are our prior work [45], [44]. Nevertheless, they
are graph repartitioners, whereas ARGO is a graph partitioner.
This is also the reason why we did not compare ARGO to [45],
[44]. Additionally, this paper extends our prior work [45], [44]
by providing a holistic view on (1) why contention on the
memory subsystems may become a problem for distributed
(graph) workloads (Section II); and (2) to what extent the
contention may harm the performance (Section V).

In fact, several vertex-cut graph partitioners [40], [32],
[11], [25] were also proposed to improve the performance
of distributed graph computation. Although they belong to
a different type graph partitioners, they all have to face the
heterogeneity and contention issue as edge-cut solutions. In
fact, work [25] is a first attempt to address the heterogeneity
issue for vertex-cut solutions.

IX. CONCLUSION

In this paper, we first demonstrated that the contention in the
memory subsystems of modern multicore clusters with high-
speedup networks can have significant performance impact
on distributed workloads. Then, we presented an architecture-
aware graph partitioner, ARGO, which considers the impact of
both the contention on the memory subsystems and the hetero-
geneity in the network communication costs while partitioning.
Our experimental results show that ARGO achieved up to 12x
speedups for the execution of BFS, SSSP, and PageRank on
real-world graphs and scaled quite well in terms of both graph
size and the number of partitions.
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